Exercise 30

Prove the statement using the ε, δ definition of a limit.

$$
\lim _{x \rightarrow 2}\left(x^{2}+2 x-7\right)=1
$$

Solution

According to Definition 2, proving this limit is logically equivalent to proving that

$$
\text { if } 0<|x-2|<\delta \quad \text { then } \quad\left|\left(x^{2}+2 x-7\right)-1\right|<\varepsilon
$$

for all positive ε. Start by working backwards, looking for a number δ that's greater than $|x-2|$.

$$
\begin{gathered}
\left|\left(x^{2}+2 x-7\right)-1\right|<\varepsilon \\
\left|x^{2}+2 x-8\right|<\varepsilon \\
|(x+4)(x-2)|<\varepsilon \\
|x+4||x-2|<\varepsilon
\end{gathered}
$$

On an interval centered at $x=2$, a positive constant C can be chosen so that $|x+4|<C$.

$$
\begin{aligned}
& C|x-2|<\varepsilon \\
& |x-2|<\frac{\varepsilon}{C}
\end{aligned}
$$

To determine C, suppose that x is within a distance a from 2 .

$$
\begin{gathered}
|x-2|<a \\
-a<x-2<a \\
-a+6<x+4<a+6 \\
|x+4|<a+6
\end{gathered}
$$

The constant C is then $a+6$. Choose δ to be whichever is smaller between a and $\varepsilon /(a+6)$: $\delta=\min \{a, \varepsilon /(a+6)\}$. Now, assuming that $|x-2|<\delta$,

$$
\begin{aligned}
\left|\left(x^{2}+2 x-7\right)-1\right| & =\left|x^{2}+2 x-8\right| \\
& =|(x+4)(x-2)| \\
& =|x+4||x-2| \\
& <(a+6)\left(\frac{\varepsilon}{a+6}\right)=\varepsilon .
\end{aligned}
$$

Therefore, by the precise definition of a limit,

$$
\lim _{x \rightarrow 2}\left(x^{2}+2 x-7\right)=1
$$

